
An Adversarial Approach to Evaluating the
Robustness of Event Identification Models

Obai Bahwal Member, IEEE, Oliver Kosut Senior Member, IEEE, and Lalitha Sankar Senior Member, IEEE
School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, USA

{obahwal,lalithasankar,okosut}@asu.edu

Abstract—Intelligent machine learning approaches are finding
active use for event detection and identification that allow real-
time situational awareness. Yet, such machine learning algorithms
have been shown to be susceptible to adversarial attacks on
the incoming telemetry data. This paper considers a physics-
based modal decomposition method to extract features for event
classification and focuses on interpretable classifiers including
logistic regression and gradient boosting to distinguish two types
of events: load loss and generation loss. The resulting classifiers
are then tested against an adversarial algorithm to evaluate their
robustness. The adversarial attack is tested in two settings: the
white box setting, wherein the attacker knows exactly the clas-
sification model; and the gray box setting, wherein the attacker
has access to historical data from the same network as was used
to train the classifier, but does not know the classification model.
Thorough experiments on the synthetic South Carolina 500-bus
system highlight that a relatively simpler model such as logistic
regression is more susceptible to adversarial attacks than gradient
boosting.

Index Terms—Event identification, machine learning, mode
decomposition, grid security, adversarial attacks, robustness.

I. INTRODUCTION

W ITH the increasing need for real-time monitoring of the
grid dynamics, machine learning (ML) algorithms are

providing viable and highly accurate solutions that support the
system operator’s requirement in making informed and timely
decisions for reliable and safe operation of the system. In
particular, such algorithms are invaluable for leveraging high-
fidelity synchrophasor data (obtained using phasor measure-
ment units (PMUs)) in real-time for accurate event detection
[1], [2]. However, PMUs have been shown to be susceptible to
adversarial attacks [3], [4] which in turn can lead to erroneous
outcomes from the learned ML models.

In [5], the authors evaluate false data injection (FDI) attacks
on ML-based state estimation models that rely on supervisory
control and data acquisition (SCADA) network. The authors
use data poisoning and gradient-based attacks as the threat
models and show that such attacks are very successful in
causing the state estimator to fail. More recently, [6] evaluates
white box adversarial attacks against event classification mod-
els based on deep neural networks. Those models utilize time-
series PMU measurements to classify between ‘no events’,
‘voltage-related’, ‘frequency-related’, or ‘oscillation-related’
events.

In contrast to the above-mentioned recent results, we focus
on real-time event identification using PMU data and physics-
based modal decomposition methods along with interpretable
ML models. Our event identification framework leverages the
approach in [7] and involves two steps: (i) extract features us-
ing physics-based modal decomposition methods; (ii) use such
features to learn logistic regression (LR) and gradient boosting
(GB) models for event classification. Our primary goal is
to design an algorithmic approach that generates adversarial
examples to evaluate the robustness of this physics-based event
classification framework. We evaluate our attack algorithm in
two distinct settings: white box and gray box. In the white
box setup, we assume that the attacker has full knowledge of
the classification framework including the classification model
(i.e., knows both (i) and (ii) detailed above), and can only
tamper with a subset of PMUs. On the other hand, for the
gray box setup, we assume that the attacker does not know
the ML classifier used by the system operator or the data that
was used for training; however, the attacker has knowledge
of the aspect (i) of the framework, has access to historical
data from the same network, and can tamper with a subset of
PMUs. In either setting, the attack algorithm perturbs event
features in the direction of the classifier’s gradient until the
event is incorrectly classified. Using detailed event-inclusive
PSS/E generated synthetic data for the 500-bus South Carolina
system, we show that both types of attacks can significantly
reduce the accuracy of the event classification framework
presented in [7].

II. SETUP

We first describe the event identification framework, intro-
duced in [7], and the two classification models we consider.

A. Event Identification Framework
We focus on identifying two classes of events: gener-

ation loss (GL) and load loss (LL), denoted by the set
 ∈ {GL, LL}. These events are measured using 𝑀 PMUs,
each of which has access to three channels, namely, voltage
magnitude, voltage angle, and frequency, indexed via the
set  = {𝑉𝑚, 𝑉𝑎, 𝐹 }. For a given event in  and channel
𝑐 ∈ , the collected time-series data from 𝑀 PMUs yields
a matrix 𝑥𝑐 ∈ ℝ𝑀×𝑁 , where 𝑁 is the length of the sample
window. Thus, for a given event, the data collected is given

ar
X

iv
:2

40
2.

12
33

8v
1

 [
ee

ss
.S

Y
]

 1
9

Fe
b

20
24

Isr
ael

-U
S BIR

D Fou
nd

ati
on

by 𝑥 = [[𝑥𝑉𝑚]𝑇 , [𝑥𝑉𝑎]𝑇 , [𝑥𝐹]𝑇]𝑇 ∈ ℝ||𝑀×𝑁 , where 𝑇 denotes
transpose of a matrix/vector.

In order to evaluate the robustness of this event identi-
fication framework, we follow the same feature extraction
technique as in [7] by assuming that the system dynamics can
be captured by using modal decomposition to extract a small
number 𝑝 of dominant modes that represent the interacting
dynamics of power systems during an event. We refer the
reader to [8], [9] for more details on modal decomposition
used in this context. These dynamic modes are defined by
their frequency, damping ratio, and residual coefficients that
comprise the presence of each mode in a given PMU [10],
[11]. The mode decomposition model is:

𝑥𝑐𝑖 (𝑛) =
𝑝
∑

𝑘=1
𝑅𝑐
𝑘,𝑖 × (𝑍𝑐

𝑘)
𝑛 + 𝜖𝑐𝑖 (𝑛), 𝑖 ∈ {1,… ,𝑀}, 𝑐 ∈ 

(1)
where 𝑥𝑐𝑖 (𝑛) is the time-series signal for the 𝑖th PMU and
channel 𝑐 ∈ , 𝑅𝑐

𝑘,𝑖 is the residue for the 𝑘th mode and
𝑖th PMU, 𝑍𝑐

𝑘 = exp(𝜆𝑐𝑘𝑇𝑠) is the 𝑘th event mode with
𝜆𝑐𝑘 = 𝜎𝑐𝑘±𝑗𝜔

𝑐
𝑘 and 𝑇𝑠 is the sampling period, and 𝜖𝑐𝑖 (𝑛) is noise.

The mode 𝜆𝑐𝑘, defined by 𝜎𝑐𝑘 and 𝜔𝑐
𝑘, representing the damping

ratio and angular frequency of the 𝑘th mode, respectively. The
residue 𝑅𝑐

𝑘,𝑖 is denoted by its magnitude |𝑅𝑐
𝑘,𝑖| and angle 𝜃𝑐𝑘,𝑖.

The dynamic response to an event is captured by a subset of
the system PMUs (𝑀 ′ < 𝑀) which are chosen based on the
highest PMUs’ signal energy for a given channel and event.
Finally, by extracting the values described above for a given
channel and event, we define the feature vector as

𝑋 =
[

{𝜔𝑐
𝑘}

𝑝′
𝑘=1, {𝜎

𝑐
𝑘}

𝑝′
𝑘=1, {|𝑅

𝑐
𝑘,𝑖|}

𝑝′
𝑘=1, {𝜃

𝑐
𝑘,𝑖}

𝑝′
𝑘=1

]

𝑖∈{1,…,𝑀 ′},𝑐∈
(2)

Here, we select only the first 𝑝′ = 𝑝∕2 modes, since typically
modes are composed of complex conjugate pairs; by choosing
the first 𝑝′ modes, we keep only one of each conjugate pair.

To compose the overall dataset, we assign event class labels
as 𝑦𝑖 = −1 and 𝑦𝑖 = 1 for LL and GL, respectively. Taking
such pairs of event features and their labels, we define the over-
all dataset as 𝐃 = {𝐗𝐷,𝐘𝐷} where 𝐗𝐷 = [𝑋1, ..., 𝑋𝑛𝐷]

𝑇 ∈
ℝ𝑛𝐷×𝑑 , 𝐘𝐷 = [𝑦1, ..., 𝑦𝑛𝐷] ∈ ℝ𝑛𝐷 , and 𝑛𝐷 is the total number
of events from both classes.

B. Classification Models
We use logistic regression (LR) and gradient boosting (GB)

classification models as the ML models for the evaluation
of the framework and design of adversarial attacks. For LR,
classification requires computing the probability of event 𝑦𝑖 as

𝑃 (𝐘 = 𝑦𝑖|𝑋𝑖, 𝑤) = 1
1 + exp(−𝑦𝑖𝑤𝑇𝑋𝑖)

(3)

where 𝑤 is the separating hyperplane between the two classes
that would minimize the average classification error over the
training data. The optimum estimator is obtained by minimiz-
ing the logistic loss as:

𝑤LR = argmax
𝑤

𝑛
∑

𝑖=1
log(1 + exp(−𝑦𝑖𝑋𝑇

𝑖 𝑤)). (4)

Gradient boosting is an ensemble learning algorithm which
builds on weak learners, that in our case are decision stumps
(single level decision trees thresholded on one feature), each
based on a single feature. GB models are trained with an
iterative greedy approach which minimizes error of each new
weak learner by fitting to the residual error made by the
previous learned predictors [12]. The output of the GB model
is

𝐹 (𝑋) =
𝑑′
∑

𝑚=1
dt𝑚(𝑋), where dt𝑚(𝑋) =

{

𝑣1𝑚, 𝑋𝑗𝑚 ≤ th𝑚
𝑣2𝑚, 𝑋𝑗𝑚 > th𝑚.

(5)
where dt𝑚 is the 𝑚th decision tree with its regression output
being 𝑣1𝑚 or 𝑣2𝑚 and thresholding the 𝑗𝑚 feature at th𝑚. The
final GB classifier is obtained by mapping 𝐹 (𝑋) to the [0, 1]
range using a sigmoid function and thresholding at 0.5.

III. THREAT MODELS

In order to evaluate the vulnerability of the event identi-
fication framework, we consider two settings: (i) white box;
and (ii) gray box. In the white box attack setting, we assume
the following: (a) the attacker has full knowledge of the
event identification framework, (b) access to all measurements
and their corresponding ground truth event label but with
restricted ability to only tamper with a subset of PMUs, and (c)
knowledge of the ML classifier used by the system operator,
including all the parameters of the classifier learned by the
operator.

In the gray box attack setting, while assumptions (a) and
(b) on the adversarial capabilities still hold, we now assume
that the attacker does not know the classification model used
by the system operator, but has access to historical data that is
not necessarily the same as that used to train the classifier. In
either case, our attack algorithm is designed to spoof a specific
classifier: in the white box setting, this classifier is the true
classifier used by the operator; in the gray box setting, it is a
different classifier trained on the adversary’s own data.

A. Targeted Adversarial Example Generation
Algorithm 1 (illustrated in Fig. 1) describes how we

generate adversarial PMU data. The algorithm utilizes the
knowledge of classification models to perturb an incoming
feature vector such that the direction of the perturbation is
chosen to point towards the negative gradient of the classifier.
The tampered vector of features is then reconstructed to obtain
a time domain signal for each of the PMUs tampered by the
attacker which then replace the original measurements at these
PMUs. The resulting collated tampered and untampered event
data across all PMUs is passed through the learned classifier
for reclassification. This entire procedure is repeated until
the classifier fails to classify correctly or when a maximum
number of iterations 𝐾 is reached.

We explain the steps of Algorithm 1 as follows. The function
ℎ represents the the transform function described in Section
II-A, and 𝑓 is the classification model used by the attacker (in
the white box setting, this is the same as that at the control

Isr
ael

-U
S BIR

D Fou
nd

ati
on

f(Xatk) = yStart
xatk = g(x)

Xatk = h(xatk)
iterations ≤

K

Xatk = Xatk + τ

Output:
xatk

End

f(Xatk) = y
Input:

x, τ,
s௠ೌ೟ೖ

xatk = h-1(Xi
atk)

for i ϵs௠ೌ೟ೖ

xatk = g(x)
Xatk = h(xatk)

Xatk

XatkXatk

Yes Yes Yes

No

No
No

Time-domain Attack Feature-domain Attack

A

xatk

Fig. 1: Attack algorithm flowchart showing the integration of time-domain attacks and feature-domain attacks to generate PMU attacks.

center; in the gray box setting, it is different). First, we check
whether 𝑓 (ℎ(𝑥)) = 𝑦; that is, whether the event is classified
correctly. If not, there is no need to attack it. Next, we start
with the untampered time domain data 𝑥 and boost it so that
the PMUs controlled by the adversary are present in the feature
vector; this step is represented by the function 𝑔, which outputs
the initial time domain attack vector 𝑥atk. In particular, recall
from Section II-A that only for the 𝑀 ′ PMUs with highest
energy are the modal residues kept in the feature vector 𝑋.
To ensure that the PMUs controlled by the attacker, denoted
by the set 𝑀atk , are among these 𝑀 ′ PMUs, their energy is
boosted by applying 𝑥atk

𝑖 ← 𝜆𝑥atk
𝑖 iteratively for all 𝑖 ∈ 𝑀atk ,

where 𝜆 > 1, until the set 𝑀atk is included in the set of 𝑀 ′

PMUs kept in the feature vector.
The perturbation vector 𝜏, which is designed based on the

classification model 𝑓 and is meant to be a vector such that
changing the feature vector in the direction of 𝜏 will cause the
event to be misclassified. The precise details of designing 𝜏
are described in the next subsection. The feature vector 𝑋atk

is extracted from 𝑥atk and perturbed by 𝜏 until 𝑓 (𝑋atk) = 𝑦′
where 𝑦′ is the incorrect event class label. To ensure that the
tampered signal remains within reasonable bounds, the feature
classes are restricted to lie within a feasible set , defined as

 = {𝑋 ∶ |𝜔𝑐
𝑘| ≤ 𝜐𝜔, 𝜎𝑐𝑘 ≥ 𝜐𝜎 , 𝜐

|𝑅|,𝑚𝑖𝑛 ≤ |𝑅𝑐
𝑘,𝑖| ≤ 𝜐

|𝑅|,𝑚𝑎𝑥,

for all 𝑘, 𝑐, 𝑖}. (6)

where 𝜐𝜔, 𝜐𝜎 , and 𝜐
|𝑅|,𝑚𝑖𝑛 and 𝜐

|𝑅|,𝑚𝑎𝑥 are the bounds for fre-
quency mode, damping mode, and residual amplitude features.
Note that 𝜃 is not restricted since any numerical value of it will
be equivalent to a value in [−𝜋, 𝜋] when performing the modal
analysis transformation but allows a larger set of feasible and
relevant attacks. After perturbing 𝑋atk by 𝜏, it is projected
onto  to ensure it is feasible.

Once the event features are misclassified in the inner
loop, the time domain signals for the compromised PMUs
are boosted before replacing the original signal replaces the
original signal. The resulting tampered time-domain signal is
denoted by 𝑥atk

𝑖 , where 𝑥atk
𝑖 ← ℎ−1(𝑋atk, 𝑖), and ℎ−1 denotes

the inverse of feature extraction transform that recovers the
time domain signal for the 𝑖th PMU (given by (1) without
the noise term). After reconstructing 𝑥atk

𝑖 , those time-domain
signals are once again boosted via function 𝑔. Since the
feature vector is related to all PMUs, but the attacker can only
control a subset, the resulting time-domain attack vector 𝑥atk

will not exactly match the feature vector 𝑋atk. Thus, 𝑋atk is
recomputed using feature extraction, and the loop repeats.

B. Designing 𝜏
We describe how to find the perturbation vector 𝜏 used

to design attacks in Algorithm 1 based on the classifier
𝑓 ∈ {𝑓𝐿𝑅, 𝑓𝐺𝐵}. For the LR classifier, we designate the
separating hyperplane by its weight vector 𝑤𝐿𝑅, as in (3).
Thus, we can misclassify an event by perturbing its values
towards the hyperplane. To realize this, we let 𝜏 = −𝑦𝑖 𝜂 𝑤𝐿𝑅

for event 𝑖, where 𝜂 ∈ ℝ is a step size chosen sufficiently
small to avoid perturbing event features too much.

For GB, recall that the classifier is composed of a sum of
𝑑′ decision trees, given by (5). The 𝑚th decision tree dt𝑚 is
applied to the feature 𝑗𝑚 and is described by its two values
𝑣1𝑚, 𝑣2𝑚 and the threshold th𝑚. Define a weight vector 𝑤𝐺𝐵 ∈
ℝ𝑑′ given by

𝑤𝐺𝐵
𝑚 =

{

1, 𝑣2𝑚 > 𝑣1𝑚
−1, 𝑣2𝑚 ≤ 𝑣1𝑚.

(7)

That is, 𝑤𝐺𝐵
𝑚 is a crude approximation to the gradient of dt𝑚

(which is not actually differentiable). Now we define 𝜏 for
event 𝑖 with class 𝑦𝑖 as

𝜏 = −𝜂 𝑦𝑖
𝑑′
∑

𝑚=1
𝑤𝐺𝐵

𝑚 𝑒𝑗𝑘 (8)

where 𝑒𝑗 ∈ ℝ𝑑 is the 𝑗th standard basis vector, i.e., it is
zero except for the 𝑗th entry which is 1. Again 𝜂 is a small
step size. For example, if 𝑦𝑖 = 1, then the goal of the
attacker is to decrease the output of the GB classifier, which
means decreasing features associated with trees with positive
gradient, and increasing features associated with trees with
negative gradient. If the same feature is used in multiple trees,

Isr
ael

-U
S BIR

D Fou
nd

ati
on

then by (8), this feature will be adjusted in proportion to the
gradients of those trees.

Algorithm 1 Targeted Adversarial Example Generation
Input: 𝑥, 𝑦: untampered PMU data and true label

𝑓 : Classification model
ℎ: Feature extraction transform
𝑔: Signal energy boosting function
𝜏: Perturbation vector
: Feasible feature set
𝑀atk : Set of PMUs controlled by attacker

If: 𝑓 (ℎ(𝑥)) = 𝑦 do
Initialize: 𝑥atk ← 𝑔(𝑥,𝑀atk)

𝑋atk ← ℎ(𝑥atk)
while 𝑓 (𝑋atk) = 𝑦 and iterations ≤ 𝐾 do

while 𝑓 (𝑋atk) = 𝑦 do
𝑋atk ← 𝑋atk + 𝜏
Project 𝑋atk into 

end while
for all 𝑖 ∈ 𝑀atk do

𝑥atk
𝑖 ← ℎ−1(𝑋atk, 𝑖)

end for
𝑥atk ← 𝑔(𝑥,𝑀atk)
𝑋atk ← ℎ(𝑥atk)

end while
Return: 𝑥atk

IV. NUMERICAL RESULTS

A. Dataset

The synthetic South Carolina 500-bus grid, consisting of
90 generators, 466 branches, and 206 loads [13], is used to
generate synthetic generation loss and load loss events. A
dynamic model of the system on PSS/E is used to generate
event data by running dynamic simulations for 11 seconds at a
sampling rate of 30Hz. The event is applied after 1 second to
ensure the system has reached steady-state. Data is collected
from PMUs distributed on the largest 𝑀 = 95 generator and
load buses of the network (largest in terms of net generation
or load). The GL events are generated by disconnecting the
largest 50 generators, one per simulation run. For each such
generator, 15 different loading scenarios are considered where
the overall system loading varies between 90% to 100% of the
net load. This is done by varying each individual load in the
system randomly within its operational limits. Through this
process, we obtain a total of 750 GL events. We create the LL
events in a similar manner (i.e., disconnecting the largest 75
loads, one at a time, at 10 different loading scenarios varying
between 90% to 100%). Thus the complete dataset has a total
of 𝑛𝐷 = 1500 event samples collected from voltage magnitude,
voltage angle, and frequency channels of 𝑀 = 95 PMUs.

In order to train the ML classification models, the dataset
is split into three sets: 20% testing set and training sets for
LR and GB each consisting of 40% of the dataset. Each set is
assured to be nearly balanced across the two classes of events.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC-AUC Curve - Base Case

LR-AUC=0.90165
GB-AUC=0.99996

Fig. 2: Base case (untampered) performance of LR and GB classi-
fication models evaluated on the testing set.

B. Evaluation of Base Cases
Figure 2 shows the base case performance of both models.

Note that the LR and GB classifiers are trained on their
respective untampered training set and evaluated on untam-
pered testing set. The resulting test accuracy is shown in the
figure. To this end, we use receiver operating characteristic
area under the curve (ROC-AUC) as the accuracy metric to
evaluate the performance of the base and tampered models.
The base models are able to identify unseen data with high
accuracy with the GB model approaching 100% accuracy and
surpassing the performance of LR.

C. Generation and Evaluation of Adversarial Examples
As a first step towards evaluating the white box and gray box

attack algorithms, we generate the tampered events as outlined
earlier. The average AUC scores are plotted in Figures 3 and 4.
In short, we iterate over the original events from the testing
set as input to the attack algorithms and choose the feasible
set bounds as

𝜐𝜔 = 2𝜔0, 𝜐𝜎 = 0, 𝜐
|𝑅|,𝑚𝑖𝑛 = 0.8|𝑅0|, 𝜐

|𝑅|,𝑚𝑎𝑥 = 2|𝑅0| (9)

where 𝜔0 and |𝑅0| are the untampered values of those features
for a given event.

To evaluate the impact of attacks on different numbers of
PMUs, we choose 10 random sets atk, each consisting of
𝑀 ′ = 20 PMUs. Denote 𝑀atk as the set consisting of the
first 𝑀atk PMUs in atk, where 𝑀atk varies from 1 to 20. We
then evaluate the attack on 𝑀atk for each 𝑀atk. Figures 3
and 4 show the average AUC as a function of 𝑀atk.

We evaluate white and gray box attacks as follows. Let
𝑓 ∈ {LR,GB} be the classification model used in the attack
algorithm, and 𝑓 ′ be the remaining classifier. In the white
box setup, 𝑓 is both used in the attack algorithm and as the
classifier applied to the generated attack data; in the gray box
setup, 𝑓 is used in the attack algorithm and 𝑓 ′ is used as the
classifier. In other words, we run the attack algorithm using
the knowledge of both classification models (LR and GB) and
evaluate the output from each case using both classifiers.

Isr
ael

-U
S BIR

D Fou
nd

ati
on

0 2 4 6 8 10 12 14 16 18 20
No. of PMUs tampered

0.0

0.2

0.4

0.6

0.8

AU
C

sc
or

es
LR attack, LR classifier (white box)
GB attack, LR classifier (gray box)

Fig. 3: AUC scores as a function of the number of tampered PMUs
for white (blue curve) and gray (red curve) box attacks for the logistic
regression (LR) classifier.

0 2 4 6 8 10 12 14 16 18 20
No. of PMUs tampered

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

sc
or

es

GB attack, GB classifier (white box)
LR attack, GB classifier (gray box)

Fig. 4: AUC scores as a function of the number of tampered PMUs
for white (red curve) and gray (blue curve) box attacks for the gradient
boosting (GB) classifier.

For the attack against the LR classifier, the AUC scores, as
shown in Fig. 3, indicate that the attack on LR, both in white
box and gray box settings, is successful in dropping the AUC
scores to less than 20% for most of 𝑀atk scenarios. We also
observe that the white box attack is more successful, reducing
the AUC score to almost 0 with just 3 tampered PMUs.

For the attack against the GB classifier attack, as shown in
Fig. 4, we observe stronger resistance to adversarial examples
in the white box setup, with a sharp drop in AUC score
with 20 tampered PMUs. Surprisingly, the gray box attack
(based on the LR model) achieves a higher success rate across
most of the range of numbers of tampered PMUs. That is,
the LR-based attack is more successful with both the LR
classifier (Fig. 3) and the GB classifier (Fig. 4). We conjecture
that this is because the LR-based attack aims to manipulate
all features, whereas the GB-based attacks only alters those
features associated with decision trees in the GB model.

V. CONCLUSION

ML-based event classification techniques can enhance situ-
ational awareness, especially with increasing DER penetration
and their need for fast dynamic monitoring and response.
We have introduced a framework to evaluate the robustness
of such classifiers against adversarial attacks on PMU data.
We have shown that sophisticated (GB) classification models
are more robust to these attacks compared to simpler (LR)
models. However, our findings suggest that the attack is more
successful when based on the LR model, even against the GB
classifier. This suggests that our white-box attack against the
GB classifier can be improved, which is a subject for future
work. In addition, future work will include developing classi-
fiers to be more robust against attacks, as well as classifiers
that are designed to distinguish attacks from legitimate events.

REFERENCES

[1] S. Brahma, R. Kavasseri, H. Cao, N. R. Chaudhuri, T. Alexopoulos, and
Y. Cui, “Real-time identification of dynamic events in power systems
using pmu data, and potential applications—models, promises, and
challenges,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp.
294–301, 2017.

[2] M. K. N. M. Sarmin, N. Saadun, M. T. Azmi, S. K. S. Abdullah,
N. S. N. Yusuf, M. M. Vaiman, M. Y. Vaiman, M. Povolotskiy, and
M. Karpoukhin, “Implementation of a pmu-based ems system at tnb,” in
2021 IEEE Power & Energy Society General Meeting (PESGM), 2021,
pp. 1–5.

[3] M. A. Rahman and H. Mohsenian-Rad, “False data injection attacks
with incomplete information against smart power grids,” in 2012 IEEE
Global Communications Conference (GLOBECOM), 2012, pp. 3153–
3158.

[4] S. Lakshminarayana, A. Kammoun, M. Debbah, and H. V. Poor, “Data-
driven false data injection attacks against power grids: A random matrix
approach,” IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 635–
646, 2021.

[5] A. Sayghe, O. M. Anubi, and C. Konstantinou, “Adversarial examples on
power systems state estimation,” in 2020 IEEE Power & Energy Society
Innovative Smart Grid Technologies Conference (ISGT), 2020, pp. 1–5.

[6] Y. Cheng, K. Yamashita, and N. Yu, “Adversarial attacks on deep neural
network-based power system event classification models,” in 2022 IEEE
PES Innovative Smart Grid Technologies - Asia (ISGT Asia), 2022, pp.
66–70.

[7] N. Taghipourbazargani, G. Dasarathy, L. Sankar, and O. Kosut, “A
machine learning framework for event identification via modal analysis
of pmu data,” IEEE Transactions on Power Systems, vol. 38, no. 5, pp.
4165–4176, 2023.

[8] T. Becejac and T. Overbye, “Impact of pmu data errors on modal extrac-
tion using matrix pencil method,” in 2019 International Conference on
Smart Grid Synchronized Measurements and Analytics (SGSMA), 2019,
pp. 1–8.

[9] T. Sarkar, F. hu, Y. Hua, and M. Wicks, “A real-time signal processing
technique for approximating a function by a sum of complex exponen-
tials utilizing the matrix-pencil approach,” Digital Signal Processing,
vol. 4, p. 127–140, 04 1994.

[10] K. Sheshyekani, G. Fallahi, M. Hamzeh, and M. Kheradmandi, “A
general noise-resilient technique based on the matrix pencil method
for the assessment of harmonics and interharmonics in power systems,”
IEEE Transactions on Power Delivery, vol. 32, no. 5, pp. 2179–2188,
2017.

[11] D. Trudnowski, J. Johnson, and J. Hauer, “Making prony analysis more
accurate using multiple signals,” IEEE Transactions on Power Systems,
vol. 14, no. 1, pp. 226–231, 1999.

[12] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine.” The Annals of Statistics, vol. 29, no. 5, pp. 1189 – 1232,
2001. [Online]. Available: https://doi.org/10.1214/aos/1013203451

[13] T. Xu, A. B. Birchfield, K. S. Shetye, and T. J. Overbye, “Creation
of synthetic electric grid models for transient stability studies,”
2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:
220726884

Isr
ael

-U
S BIR

D Fou
nd

ati
on

https://doi.org/10.1214/aos/1013203451
https://api.semanticscholar.org/CorpusID:220726884
https://api.semanticscholar.org/CorpusID:220726884

	Introduction
	Setup
	Event Identification Framework
	Classification Models

	Threat Models
	Targeted Adversarial Example Generation
	Designing

	Numerical Results
	Dataset
	Evaluation of Base Cases
	Generation and Evaluation of Adversarial Examples

	Conclusion
	References

